
ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 8, August 2013

Copyright to IJARCCE www.ijarcce.com 3247

Multi-Parameter Summarization for Software

Architecture Recovery

Sarvar Begum
1
, Manjula.K.S

2
, D. Venkata Swetha Ramana

 3

Student, CSE, RYMEC, Bellary, India
 1

Student, CSE, RYMEC, Bellary, India
2

Senior Lecturer, CSE, RYMEC, Bellary, India
3

Abstract: Software architecture is identified as an important element in the successful development and evolution of

software systems. In spite of the significant role of architecture representation and modeling, many existing software

systems like legacy or eroded ones do not have a consistent architecture representation. There have been several algorithms

on Architecture recovery utilizing various aspects of similarity measures, clustering, lexical rules and distance measures. It

is understood from the literature that no single technique can give best interpretation or desired result in the summarization

process. Therefore in this work we propose a multi parameter summarization for extracting high level software architecture

with the help of Bipartite graph matching and semantic similarity.

Keywords: Software architecture recovery, bipartite matching, semantic similarity

I. INTRODUCTION

Software is a set of modules. Architecture is a structure of

the system which is a set of software elements and externally

visible properties of those elements and the relationships

among them. The term SA frequently indicates the

documentation of a system’s ―Software Architecture‖.

Documenting software architecture helps in the interaction

between stake holders, describes early decisions about the

high level design, and allows reuse of design components

between projects.

The term SA is used to denote three concepts

 High level structure of the software system

 Order for creating such a high level structure

 Documentation of this high level structure

It is known that maintenance of software system requires a

large portion of programmers effort and also a large amount

of time will be spent in understanding the program’s logic.

So it could greatly help the maintainers if we help them in

understanding the program logic (by providing

documentation).One way to help the maintainers is to give a

complete overview of the existing system. This overview

may contain the main components of the system,

relationships among these components and conditions on

these relationships. This kind of overview is called software

architecture.

The explanation of architecture of a system can help a

maintainer’s attention to the more critical parts of the system

which need to be understood in more detail.

Most of the SAR profession are involved in finding the

methods which help us to identify the architectural

description of the system. There is a large amount of existing

code which needs to be maintained and would also benefit

from an architectural description. Thus, there is a need to

recover architectural descriptions for existing systems.

 This topic has gained the concentration of

researchers lately, and developers have started to document

software architectures. The current architecture of a software

system may differ from the documented architecture if

architecture changes are made during software

implementation or maintenance and no related effort is made

to maintain the related architecture documents. Although in

theory, architectural integrity can be enforced by a

continuous review process, in practice this is rarely done. To

evaluate how well the architecture of a software system

corresponds to its documentation, we use architecture

conformance analysis; it can also help in keeping the

document of software architecture up to date.

 SAR is a reverse engineering process and is defined

as process of extracting architectural information from its

lower level abstraction such as source code. As a source

code changes, the maintenance of document related to

source code becomes difficult. Most of the times when the

programmer modifies the source code, he or she will not do

the modification to the related document. As a result, the

documentation becomes outdated. So, the software

architecture recovery plays an important role in maintenance

and evaluation of software systems. SAR is a flavour of

reverse engineering that concerns all activities for making

existing of software architecture explicit. In SAR, the

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 8, August 2013

Copyright to IJARCCE www.ijarcce.com 3248

analysis must show all the historical design decision by

looking at the existing implementation and documentation of

the system

The use of software architecture can have a positive impact

on four aspects of software development.

1. Understanding: Software architecture helps us to

understand the system at different levels of abstraction. For

making specific architectural choices, architectural

description exposes the high-level conditions on system

design.

2. Reuse: Architectural descriptions allows reuse at multiple

levels. Architectural design supports, in addition, both reuse

of large components and also frameworks into which

components can be integrated.

3. Evolution: Software architecture can expose the

dimensions along which a system is expected to evolve.By

making explicit the ―load-bearing walls" of a system, system

maintainers can better understand the ramifications of

changes, and thereby more accurately estimate costs of

modifications. Moreover, architectural descriptions can

separate concerns of the functionality of a component from

the ways in which that component is connected to (interacts

with) other components. This allows one to change the

connection mechanism to handle evolving concerns about

performance, interoperability, prototyping, and reuse.

4. Analysis: Architectural descriptions provide new

opportunities for analysis, including high-level forms of

system consistency checking, conformance to an

architectural style, conformance to quality attributes, and

domain-specific analyses for architectures that conform to

specific styles.

Challenges:

 To find a process that can support reveiling software

architecture within a sub system

 The level of automization that can be achieved in this

process

 The restrictions on the process of architecture

recovery(E.g., Recovering all design decisions)

II. EXISTING METHODS

A. Appriori algorithm

In graph based architecture recovery methods, finding the

frequent sub graphs from the main graph is the major step.

We can use the apriori based algorithm to find the frequent
sub graphs. The main disadvantage of apriori based

algorithm is that it requires a candidate generation step and it

creates the significant overhead while joining two size-k and

size-k+1 subgraphs.

B. Approximate graph matching algorithm

A graph pattern matching can be described as software

architecture recovery because both uses recursive graph

equations that match to an iterative graph matching process

and in graph matching process ,an architecture is represented

as a graph where nodes represent modules and edges

represent the relationships among these modules..In this

process,we can consider two graphs G1 and G2 and a

function f that maps the nodes and edges of G1 to the nodes

and edges of G2. As a result of graph matching process

which is exploratory in nature, we get a pattern graph which

is not the final graph in the proposed software architecture

recovery. Here we generate all the possible sub graphs of

main graph and we find the exact matrix between pattern

graph and a subgraph.The pattern-graph represents a

macroscopic view and structural constraints for a part or the

whole of the system architecture to be recovered. The goal is

to find a sub graph that matches the pattern graph. The

source graph provides the search space for matching process.

This search space is divided into sub spaces using data

mining techniques and each sub space is a sub set of main

search space.

 This Search Algorithm generates a search tree that

corresponds to the recovery of each module Mi in

AQL(Architectural Query Language).It

It Consists of a

i) root node for matching the main seed of the Source region

with the first place holder ni,1 in the pattern region Gi
pr

.

ii) A number of non-leaf tree-nodes at different levels of the

search-tree that correspond to different alternative matching

of the place holders in the Pattern region with nodes in the

source region

iii) Leaf tree-nodes that correspond to solution paths where

the placeholders have been matched and constraints have

been met.

A place holder is set by each phase for the process of

matching by the search tree which is divided into number of

phases. This helps us to manage the complexity matching

process of a large graph,which is divided into K incremental

phases so that the recovery process performs a Multiphase

matching. Each Partial Matching at phase i where i takes

values from 1,2,3,……k generating a search tree which is a

part of Multiphase Search space .

 In this algorithm, the result of previous phase which is

stored in queue is discarded by storing the result of current

phase. The algorithm should back track by doing one of the

following three steps if the Current phase i of the matching

process fails to identify a matched graph Gi
m

i) Discarding the result that was stored queue in its previous

phase G
m

i-1

ii) Restoring the search tree for previous phase i-1

iii) Expanding the search tree to find another solution Gm1
i-1

iv) Advancing to the current phase i and generating a new

search tree from G
m1

i-1

In the Nth phase of this algorithm, we are backtracking to

the root n times. Hence the complexity increases by

exponential order.

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 8, August 2013

Copyright to IJARCCE www.ijarcce.com 3249

C. Drawbacks of existing methods

The drawbacks of existing system are as follows:

Tools taking document and source code as input require

huge calculations and hence require huge processing power

of CPU

Tools using appriori algorithm have overhead of candidate

generation step

Tools using approximate graph matching algorithm

increases the complexity to exponential order.

The user require a prior knowledge of architecture to specify

the query for required architectural components

Sometimes we may have only a dll or exe as source of

input for recovering the architecture.

III. PROPOSED SYSTEM

In proposed system, we extract all the unique methods,

variable or classes or terms from a dll file or an executable

file using the concept of reflection. Reflection uses the type

system. Every compiled C# program is encoded into a

relational database—this is called metadata. With reflection

we act upon the data in this special database. Astonishing

features rely on System. Reflection. Structurally, metadata is

a normalized relational database. This means that metadata

is organized as a set of cross-referencing rectangular tables.

The main value of Reflection is that it can be used to inspect

assemblies, types, and members. It's a very powerful tool for

determining the contents of an unknown assembly or object

and can be used in a wide variety of cases.

 Then we use the levenshtein algorithm to compute the

similarity of each token with respect to all other tokens and

construct a cost matrix which is used as input to bipartite

matching algorithm to find the score. Thus we use the

bipartite matching and similarity measure to find the final

architecture of the assembly.

In the proposed system, the important step is to find the

similarity measure of each token with respect to all other

tokensAn interesting method where strings are represented

as a graph which is defined as G = (V, E), where V (V1

partitions of first string V2partitions of second string)are

nodes representing the secondary structural

elements(partitioned tokens) of the strings and E are edges

representing the connections between the various partitions

of tokens in the string. We use bipartite graph matching

technique, where secondary structure elements of two strings

(tokens) A and B are represented as nodes in weighted

bipartite graph. An edge is defined as degree of similarity

between two nodes each from different string. The weight of

edges is calculated using levenshtein distance (The distance

between two strings reflects the number of prescribed edit

operations that are required in order to transform one string

into the other) between strings and is represented as cost

matrix in the proposed system. Then the similarity is found

by choosing such a set of edges, which has maximum

weight. In other words, the bipartite matching algorithm

calculates the score by traversing the edge which has

maximum cost (edge between two strings which are most

similar i.e., higher cost in cost matrix).The score is 1 if

strings are same, otherwise score is positive value less than

1.Since there is no back tracking as in approximate graph

matching algorithm, the complexity is decreased to linear

order. Finally, the average score is calculated by adding

score of each token with respect to all other tokens divided

by number of tokens and displayed along with token. This

score represents the similarity measure of each token with

respect to all other tokens. Thus, tokens having similar name

will have nearly similar score.

The proposed system uses the two algorithms.

 Levenshtein algorithm

 Bipartite matching algorithm

Levenshtein algorithm

Bipartite matching:

Algorithm Name: Levenshtein algorithm

Input : A pair of strings (extracted tokens)

Output : Similarity measure of strings

in terms of number edit operations to transform

one string to another.

Description : Select a pair of tokens from

architecture tree and find the similarity

measure. This is done on every possible pair of

tokens from architecture tree.

 Algorithm Name: Bipartite matching

Input : A pair of strings (strings) and

their corresponding cost matrix

Output : Similarity score between given

pair of strings based on cost matrix.

Description : Accepts the given input and

represents it as graph where represent weight of

edges.The algorithm traverses the edge that has

maximum cost (maximum similarity) to find

the final similarity.

 .

Fig 1: Proposed system

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 8, August 2013

Copyright to IJARCCE www.ijarcce.com 3250

In the next step, the proposed system selects the tokens with

maximum score as most significant or most related

components of the architecture. The similarity measure of

one token with respect to all other tokens is displayed as

score in the previous module. This module will select the

tokens based on this score. It is possible to recover the

required percentage of tokens by adjusting the value in the

source code. The tokens having similar names will be

displayed near to each other.

IV. CONCLUSION

Architecture recovery occurs much later in a program’s

lifecycle, after it has been deployed for long enough that

many of the original developers are no longer around or

have forgotten many details that drove the original

development, including the program’s underlying

architecture and the rationale for it. If the program must

now be changed in some way, the changes must respect the

forgotten architecture. Therefore, it is necessary to recover

the program’s architecture and the rationale for the

architecture from a detailed and thorough examination of the

program’s code and any other available related artifacts.

This recovery is very much detective work, relying on

intuition and experience about how code, in general, works

and some lucky discoveries. The sources of information can

be any of the following: the executable file of the previous

project, the past versions of the code, comments in code,

documentation about the code.

 In this paper I have used a bipartite graph matching

technique to recover the Software Architecture. It is more

efficient than Apriori algorithm. To avoid the overheads

incurred in Apriori algorithm, we used a non Apriori based

algorithm, to recover the Software Architecture and

experimental results have shown that the recovered

architecture from developed system is more efficient than

Apriori based. This algorithm runs in linear time which

improves the performance in terms of iterations when

compared to A* algorithm.

Thus in this work we present a method that

obtains the architecture of the software from its executable

file and uses multiple parameters such as similarity measure

and bipartite matching algorithm to identify most significant

components of the architecture.

V. REFERENCES

[1] Graph theory with applications j.a.bondy and U.S.R. Murthy.

[2] Planar graph drawing T.Nishizeki .

[3] Discrete mathematics and its applications Series Editor KENNETH H.
ROSEN.

[4] ―Improving the software architecture through fuzzy clustering

technique‖,shaheda akthar sk.md.rafi ,ijcse .
[5] A.Inokuchi,T.Washio and H.Motoda, ―an Apriori based algorithm for

mining frequent substructures from graph data‖, In PKDD’ 00,2000 .

[6] D.R. Harris, H. B. Reubenstein, and A. S. Yeh, ― Reverse engineering

to the architectural level‖,in Proceedings of the 17th ICSE, pages 186–

195, 1995.
[7] Jun Haun, Weiwang,Jan Prins,Jiong Yang, ―SPIN: Mining Maximal

frequent Subgraphs from Graph Databases‖.

[8] Kamran Sartipi and Kostas Kontogiannis , ―A user-assisted approach to
component clustering‖, Accepted for the Journal of Software

Maintenance: Research and Practice(JSM), 2002.

[9] Kamran Sartipi and Kostas Kontogiannis, ― Interactive software
architecture recovery: An incremental supervised clustering approach‖.

Technical Report WE&CE#2002.

[10] Kamran Sartipi, Kostas Kontogiannis, and Farhad Mavaddat., ―A
pattern matching framework for software architecture recovery and

restructuring‖. In Proceedings of the IEEE IWPC, pages 37–47,

Limerick, Ireland, June2000.
[11] Sartipi.k, ― Software architecture recovery based on pattern matching ‖.

[12] Sartipi, ―On Modeling Software Architecture Recovery as Graph

architecture‖.
[13] Venkatesh Karthik Srinivasan,Thomas Reps, ―Software-Architecture

Recovery from Machine Code‖.
[14] Pavankumar kolla, kolla HariPriyanka, R Manjula, ―Software

Architecture Recovery through Graph Mining Technique and Reduction

of Complexity Involved in A* Algorithm‖.

